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Motivation



What is a task-oriented dialogue system? = mxt Seill

Assist user 1n solving a task
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Typical modular architecture

Pic from: Gao J, Galley M, Li L. Neural approaches to conversational AI[C]//The 41st International ACM SIGIR Conference on Research & Development in Information Retrieval. 2018: 1371-1374.
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Assist user 1n solving a task

input x

Statistical model

_%ﬁ_\_ .
oty (e.g., neural) = %

End-to-end architecture

Pic from: Gao J, Galley M, Li L. Neural approaches to conversational AI[C]//The 41st International ACM SIGIR Conference on Research & Development
in Information Retrieval. 2018: 1371-1374.
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“| want to watch | inform(city="seattle”) |
it in Seattle” | ) - DM I
b[ NLU J > DST }'

| . I >

' | o
| - |
< | NG < POL ]:
|

How many thk?tS | request (num tickets)
do you need?” | - |

Typical modular architecture

Pic from: Gao J, Galley M, Li L. Neural approaches to conversational AI[C]//The 41st International ACM SIGIR Conference on Research & Development
in Information Retrieval. 2018: 1371-1374.
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The dialogue state represents what the user 1s looking for at the current
turn of the conversation.
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The dialogue state represents what the user 1s looking for at the current
turn of the conversation.

User: I want an expensive restaurant Turn 1:

. inform(price=expensi
that serves Turkish food. ve, food=Turkish)

- : Turn 2:
System: Anatolia serves Turkish food. i nform (price—expensive,

User: What is the area? \food=Turkish) ; request (area))




Current DST scenarios
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Traditional DST:

| uncertainty .
utterance NLU ] DST dialogue state
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4{ A single DST component J—>
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End-to-end DST
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User: I want an expensive restaurant that

serves Turkish food.

System: Anatolia serves Turkish food.
User: What is the area?




User: I want an expensive restaurant that
serves Turkish food.

Manual labeling:
inform(price=expensive,
food=Turkish)

System: Anatolia serves Turkish food.
User: What 1s the area?

Manual labeling:
inform(price=expensive,
food=Turkish); request (area)

4 )

Ontology(optional):

price: [cheap, expensive, moderate, ...]
food: [Turkish, Italian, polish, ...]
area: [south, north, center, ...]
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User: I want an expensive restaurant that
serves Turkish food.

Manual labeling:
inform(price=expensive,
food=Turkish)

System: Anatolia serves Turkish food.
User: What 1s the area?

Manual labeling:
inform(price=expensive,
food=Turkish); request (area)

4 )

Ontology(optional):

price: [cheap, expensive, moderate, ...]
food: [Turkish, Italian, polish, ...]
area: [south, north, center, ...]
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User: I want an expensive restaurant that
serves Turkish food.

Manual labeling:
inform(price=expensive,
food=Turkish)

System: Anatolia serves Turkish food.
User: What 1s the area?

Manual labeling:
inform(price=expensive,
food=Turkish); request (area)

4 )

Ontology(optional):

price: [cheap, expensive, moderate, ...]
food: [Turkish, Italian, polish, ...]
area: [south, north, center, ...]
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Turn 1:

food=Turkish)

food=Turkish) ;

-

inform(price=expensive,

request (area)

]EUHIZ:inform(price=expensive,

/




Limitation of end-to-end DST
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Limitations of end-to-end DST:

* Costly and slow: 8438 dialogues with 1249 workers in MultiwOZ 2.0 dataset
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End-to-end DST paradigm:

.
manual Iabeling]—> corpus DST model —>[ test ]
U

Limitations of end-to-end DST:

* Costly and slow: 8438 dialogues with 1249 workers in MultiWOZ 2.0 dataset

" | Annotation errors

MultiwOZ 2.0 around 40% [Eric et al., 2019]

* Error-prone:
MultiwOZ 2.1  over 30% [Zhang et al., 2019]

[Eric et al., 2019] Mihail Eric, Rahul Goel, Shachi Paul, Abhishek Sethi, Sanchit Agarwal, Shuyag Gao, and Dilek Hakkani-Tur. Multiwoz 2.1: Multi-domain dialogue state corrections and state tracking

baselines. arXiv, 2019.
[Zhang et al., 2019] Jian-Guo Zhang, Kazuma Hashimoto, Chien-Sheng Wu, Yao Wan, Philip S Yu, Richard Socher, and Caiming Xiong. Find or classify? dual strategy for slot-value predictions on multi

domain dialog state tracking. arXiv, 2019.
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End-to-end DST paradigm:

.
manual Iabeling]—> corpus DST model —>[ test ]
U

Limitations of end-to-end DST:

* Costly and slow: 8438 dialogues with 1249 workers in MultiWOZ 2.0 dataset

I 1o updated to
MultiwOZ 2.0 around 40% [Eric et al., 2019] rad MultiwOZ 2.2

MultiwOZ 2.1  over 30% [Zhang et al., 2019]

* Error-prone:

[Eric et al., 2019] Mihail Eric, Rahul Goel, Shachi Paul, Abhishek Sethi, Sanchit Agarwal, Shuyag Gao, and Dilek Hakkani-Tur. Multiwoz 2.1: Multi-domain dialogue state corrections and state tracking

baselines. arXiv, 2019.
[Zhang et al., 2019] Jian-Guo Zhang, Kazuma Hashimoto, Chien-Sheng Wu, Yao Wan, Philip S Yu, Richard Socher, and Caiming Xiong. Find or classify? dual strategy for slot-value predictions on multi

domain dialog state tracking. arXiv, 2019.
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Successful in narrow domains with large
annotated datasets
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What is the problem? A Kokl R *

Successful in narrow domains with large
annotated datasets

Limited to the domain trained on and do not — 8
afford generalization to new domains.




What is the problem? A Kokl R *

Successful in narrow domains with large
annotated datasets

Limited to the domain trained on and do not
afford generalization to new domains.
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Definition:

What 1s given?

A set of customer service records
without annotation.

User: [ want an expensive restaurant that serves
Turkish food.

System: Anatolia serves Turkish food.

User: What is the area?
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Definition:

What 1s given? What 1s the target?

A set of customer service records Automatically discover information that the
without annotation. user 1s looking for at each turn.

User: [ want an expensive restaurant that serves 3! inform (price=expensive, food=Turkish)
Turkish food.

System: Anatolia serves Turkish food. inform(price=expensive,
User: What is the area? food=Turkish); request (area)




Dialogue State Induction vs DST



Dialogue State Induction vs DST @ mA4 Sl 6

4 )
User: [ want an expensive restaurant
that serves Turkish food.

System: Anatolia serves Turkish

food.
User: What is the area?
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Dialogue State Induction vs DST B AAS Sl

User: [ want an expensive restaurant
that serves Turkish food.

Manual labeling:
inform(price=expensive,
food=Turkish)

System: Anatolia serves Turkish
food.

User: What is the area?
Manual labeling:

inform(price=expensive,
food=Turkish); request (area)
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4 )
User: [ want an expensive restaurant
that serves Turkish food.

Manual labeling:
inform(price=expensive,
food=Turkish)

System: Anatolia serves Turkish

food.
User: What is the area?

Manual labeling:
inform(price=expensive,
food=Turkish); request (area)

Ontology(optional):

price: [cheap, expensive, moderate, ...]
food: [Turkish, Italian, polish, ...]

area: [south, north, center, ...]
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4 )
User: [ want an expensive restaurant
that serves Turkish food.

Manual labeling:
inform(price=expensive,
food=Turkish)

System: Anatolia serves Turkish

food.
User: What is the area?

Manual labeling:
inform(price=expensive,
food=Turkish); request (area)

Ontology(optional):

price: [cheap, expensive, moderate, ...]
food: [Turkish, Italian, polish, ...]

area: [south, north, center, ...]

DST

Turn 1:
inform(price=expensive,
food=Turkish)

Turn 2:
inform(price=expensive,
food=Turkish); request (area)
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User: [ want an expensive restaurant
that serves Turkish food.

Manual labeling:
inform(price=expensive,
food=Turkish)

System: Anatolia serves Turkish

food.
User: What is the area?

Manual labeling:
inform(price=expensive,
food=Turkish); request (area)

Ontology(optional):
price: [cheap, expensive, moderate, ...]
food: [Turkish, Italian, polish, ...]

area: [south, north, center, ...]

DST

Turn 1:
inform(price=expensive,
food=Turkish)

Turn 2:
inform(price=expensive,
food=Turkish); request (area)

Dialogue State Induction vs DST

4 )
User: [ want an expensive restaurant
that serves Turkish food.

System: Anatolia serves Turkish

food.
User: What is the area?

& M K 4

WESTLAKE UNIVERSITY




4 )
User: [ want an expensive restaurant
that serves Turkish food.

Manual labeling:
inform(price=expensive,
food=Turkish)

System: Anatolia serves Turkish

food.
User: What is the area?

Manual labeling:
inform(price=expensive,
food=Turkish); request (area)

4 )
User: [ want an expensive restaurant
that serves Turkish food.

no a7

System: Anatolia serves Turkish
food.
User: What is the area?

ManuaHabehino:
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Ontology(optional):

price: [cheap, expensive, moderate, ...]
food: [Turkish, Italian, polish, ...]

area: [south, north, center, ...]

DST

Turn 1:
inform(price=expensive,
food=Turkish)

Turn 2:
inform(price=expensive,
food=Turkish); request (area)
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User: [ want an expensive restaurant
that serves Turkish food.

Manual labeling:
inform(price=expensive,
food=Turkish)

System: Anatolia serves Turkish
food.
User: What is the area?

4 )
User: [ want an expensive restaurant
that serves Turkish food.

no a7

System: Anatolia serves Turkish

food.
User: What is the area?

Manual labeling: ManuaHabehino:
inform(price=expensive, Irform{price=expensive;
food=Turkish); request (area) food=Turkish)r—reguestiarea)
Ontology(optional): Ontology(optional):
price: [cheap, expensive, moderate, ...] HCe: 5 Ve, 5
food: [Turkish, Italian, polish, ...] . - 5
area: [south, north, center, ...] - - :

- J - J

DST DSI
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Turn 1: Turn 1:

inform(price=expensive,
food=Turkish)

Turn 2:
inform(price=expensive,
food=Turkish); request (area)

inform(price=expensive,
food=Turkish)

Turn 2:
inform(price=expensive,
food=Turkish); request (area)
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Zero-shot DST: support unseen domains (services)
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Zero-shot DST: support unseen domains (services)

Motivation: Different domains (services) with similar schemas
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Zero-shot DST: support unseen domains (services)

Motivation: Different domains (services) with similar schemas
2 &

name: "from" Slots name: "origin" Slots

name: "to" name: "destination"
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Zero-shot DST: support unseen domains (services)

Motivation: Different domains (services) with similar schemas

aS >

slots along with their natural language description
A

name: "from" Slots name: "origin" Slots
description: “Starting city for train journey" description: “City of origin for the flight"

name: "to" name: "destination"

description: “Ending city for the train journey" description: “City of destination for the flight"

Example from the SGD dataset [Rastogi et al., 2019].

[Rastogi et al., 2019]Rastogi A, Zang X, Sunkara S, et al. Towards scalable multi-domain conversational agents: The schema-guided dialogue dataset[J]. arXiv
preprint arXiv:1909.05855, 2019.
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name: "from" Slots name: "origin" Slots
description: “Starting city for train journey" description: “City of origin for the flight"

name: "to" name: "destination"

description: “Ending city for the train journey" description: “City of destination for the flight"
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DSI VS zero-shot DST R ok A . |

name: "from" Slots name: "origin" Slots
description: “Starting city for train journey" description: “City of origin for the flight"

name: "to" name: "destination"

description: “Ending city for the train journey" description: “City of destination for the flight"

Zero-shot DST Limitations:



WESTLAKE UNIVERSITY oot o et ot e Bt

DSI VS zero-shot DST =04 il 6

name: "from" Slots name: "origin" Slots
description: “Starting city for train journey" description: “City of origin for the flight"

name: "to" name: "destination"

description: “Ending city for the train journey" description: “City of destination for the flight"

Zero-shot DST Limitations:

* High qualified (consistent) human annotation
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name: "from" Slots name: "origin" Slots
description: “Starting city for train journey" description: “City of origin for the flight"

name: "to" name: "destination"

description: “Ending city for the train journey" description: “City of destination for the flight"

Zero-shot DST Limitations:

* High qualified (consistent) human annotation
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name: "from" Slots name: "origin" Slots
description: “Starting city for train journey" <« description: “City of origin for the flight"

name: "to" name: "destination"

description: “Ending city for the train journey" < description: “City of destination for the flight"

Zero-shot DST Limitations:

* High qualified (consistent) human annotation
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name: "from" Slots Consistency name: "origin" Slots
description: “Starting city for train journey" <« description: “City of origin for the flight"

name: "to" name: "destination"

description: “Ending city for the train journey" < description: “City of destination for the flight"

Zero-shot DST Limitations:

* High qualified (consistent) human annotation
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name: "from" Slots Consistency name: "origin" Slots
description: “Starting city for train journey" <« description: “City of origin for the flight"

name: "to" name: "destination"

description: "Ending city for the train journey" < description: “City of destination for the flight"

Zero-shot DST Limitations:

* High qualified (consistent) human annotation

* Transfer to distant domain (service)
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name: "from" Slots consistency name: “deposit_rate" Slots
description: "Starting city for train journey" < description: "the standard for calculating deposit interest"
name: "to" name: "loan_rate"

description: "Ending city for the train journey" < description: "the interest rate that banks charge to borrowers"

Zero-shot DST Limitations:

* High qualified (consistent) human annotation

* Transfer to distant domain (service)
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name: "from" Slots coO Cy | name: “deposit_rate" Slots
description: "Starting city for train journey" < description: "the standard for calculating deposit interest"
name: "to" name: "loan_rate"

description: "Ending city for the train journey" < »description: "the interest rate that banks charge to borrowers"

Zero-shot DST Limitations:

* High qualified (consistent) human annotation

* Transfer to distant domain (service)
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name: "from" Slots cO NCy | name: “deposit_rate" Slots
description: "Starting city for train journey" < description: "the standard for calculating deposit interest"
name: "to" name: "loan_rate"
description: "Ending city for the train journey" < »description: "the interest rate that banks charge to borrowers"
Zero-shot DST Limitations: DSI features:
* High qualified (consistent) human * Release human burden

annotation ‘

* Transfer to distant domain (service) * Data-driven: automatically discover
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Two steps: Utterance: I need to take a train out of Chicago,
I will be leaving Dallas on Wednesday.




Two steps:

* (Candidates (values) extraction
(POS tag, NER, coreference)
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Utterance: I need to take a train out of Chicago,
I will be leaving Dallas on Wednesday.

U

train, Chicago, Dallas, Wednesday
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Two steps: Utterance: I need to take a train out of Chicago,

I will be leaving Dallas on Wednesday.

* (Candidates (values) extraction
(POS tag, NER, coreference) ﬂ

* Slot assignment: two neural E_I_r_f_l_i_g_,__q_l_l_i_ggg_c_)_,___I_)a_l_l_q_s_,__Wg@p_e__s__c_l_e_t_}_l___é
latent variable models
(DSI-base and DSI-GM)

Inform{train-departure=Chicago,
train-destination=Dallas,
train—-leave at=Wednesday}




What is VAE?

X x'=d(z)

Encoder Decoder

e d

IS BirER T ERRT
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5154
2
loss = ||x-x||

AutoEncoder

Pics from https://www.jianshu.com/p/ffd493e10751
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x'=d(z)
KESHE
Z ~ N(M,0)

5144

loss=||x-x'|| + KL(N(p.o), N(0,1))

Variational AutoEncoder
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I need to take a train out of Chicago, I will be leaving Dallas on Wednesday.

—

Encoder
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I need to take a train out of Chicago, I will be leaving Dallas on Wednesday.

one-hot 0 1 0 1 ... 0 0 1 1
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vocab length (all candidates)
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Encoder
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I need to take a train out of Chicago, I will be leaving Dallas on Wednesday.

one-hot 0 1 0 1 ... 0 0 1 1

Y

vocab length (all candidates)
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encoded oh
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I need to take a train out of Chicago, I will be leaving Dallas on Wednesday.

one-hot 0 1 0 1 ... 0 0 1 1

Y

vocab length (all candidates)

contextualized
embedding
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I need to take a train out of Chicago, I will be leaving Dallas on Wednesday.

one-hot 0 1 0 I ... 0 0 1 1
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I need to take a train out of Chicago, I will be leaving Dallas on Wednesday.
one-hot 0 1 0 1 ... 0 0 1 1 *
vocab length (all candidates) contextualized /

A\ 4

embedding

v

encoded oh | encoded ce
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— Sampling
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reparameterization trick

L uroras-N ()
— Sampling
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— Decoder
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reparameterization trick

| uross-N (1) | Sampling
latent state vector _

latent slot vector —
(dimension: slot num)

— Decoder
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reparameterization trick

| wrorss - N(O]) - | Sampling
latent state vector _
latent SlOt vector —
(dimension: slot num)

‘ — Decoder
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— Decoder
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reparameterization trick
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latent slot vector —
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Models

MultiwWOZ 2.1 |

SGD

Turn level | Joint level | Turn level | Joint level
F1 Accuracy | Precision Recall F1  Accuracy | Precision Recall F1  Accuracy | Precision Recall F1 Accuracy
Random 1.49 1.39 0.21 0.28  0.23 0.02 0.94 095 094 0.92 0.05 0.08  0.06 0.02
DSI-base 373 25.7 339 32.1 32.1 23 27.0 26.0 260 21.1 139 17.5 14.5 23
DSI-GM 49.6 36.1 49.2 432 448 5.0 34.7 334 335 275 19.0 22.9 19.5 3.1

Table 1: Overall results of DSI.



MultiwOZ 2.1 | SGD
Models Turn level | Joint level | Turn level | Joint level
Precision Recall Fl1 Accuracy | Precision Recall F1  Accuracy | Precision Recall F1  Accuracy | Precision Recall F1 Accuracy
Random 1.49 1.51 1.49 1.39 0.21 0.28  0.23 0.02 0.94 095 094 0.92 0.05 0.08  0.06 0.02
DSI-base 38.8 3717 373 25.7 339 32.1 32.1 23 27.0 26.0 260 21.1 139 17.5 14.5 23
DSI-GM 52.5 393 496 36.1 49.2 432 448 2 5.0 34.7 334 335 275 19.0 22.9 19.5 3.1

Table 1: Overall results of DSI.
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Dialogue state module
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Dialogue State
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| [ Manual labeling ]—b |
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[Chen et al., 2019] Wenhu Chen, Jianshu Chen, Pengda Qin, Xifeng Yan, and William Yang Wang. Semantically conditioned dialog response
generation via hierarchical disentangled self-attention. In ACL, 2019.



System utterance

User utterance —mw

Dialogue state module

[Without annotation]—b

NULL

NULL

Dialogue State

i ‘ﬁﬂ J; % Ji’i.—_—

Dialogue State

Dialog Act Prediction | Delexicalized

Precision Recall F1 | BLEU Entity F1
None 71.0 67.4  69.1 18.7 54.6
DSI-GM 72.0 70.5 71.2 20.8 56.5
Manual labeling 75.6 73.0 74.2 21.6 61.3

[Chen et al., 2019] Wenhu Chen, Jianshu Chen, Pengda Qin, Xifeng Yan, and William Yang Wang. Semantically conditioned dialog response

generation via hierarchical disentangled self-attention. In ACL, 2019.
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User utterance —mw

Dialogue state module

[Without annotation]—b

NULL

NULL

Dialogue State

Dialogue State

Dialog Act Prediction | Delexicalized

Precision Recall F1 | BLEU Entity F1
None 71.0 67.4  69.1 18.7 2 54.6
DSI-GM 72.0 70.5 71.2 20.8 56.5
Manual labeling 75.6 73.0 74.2 21.6 61.3

[Chen et al., 2019] Wenhu Chen, Jianshu Chen, Pengda Qin, Xifeng Yan, and William Yang Wang. Semantically conditioned dialog response

generation via hierarchical disentangled self-attention. In ACL, 2019.



Analysis & M x 4 el

hotel (13 slot types)

book stay, pricerange,
277 257

book day,
attraction  hotel restaurant taxi train name, 325 253
DSI-base 27.9 21.7 26.1 30.7  26.0
DSI-GM 40.3 314 35.6 39.9 36.8 others, 4
book people,
Table 4: Turn goal accuracy per domain. parking, 171 2460
internet, 183 fype, 230

stars, 200

attraction (9 slot types)

name, 280

arca, 273

\others, 14
area , 220 type, 337
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* Dialogue state induction: a novel task to automatically 1dentify
dialogue states

* DSI-base/DSI-GM: two neural generative models with
latent variables

* Challenging and promising: unsupervised setting 1s very practical

* [JCAI review: this problem 1s important and interesting, this area
should attract more attention. This work has great potential of
motivating follow-up research.
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