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NLU DST

Propagating
uncertainty

Traditional DST:

A single DST component

End-to-end DST:

utterance dialogue state

dialogue stateutterance
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Definition:

What is given?

A set of customer service records 
without annotation.

What is the target?

Automatically discover information that the 
user is looking for at each turn.

User: I want an expensive restaurant that serves 
Turkish food.
System: Anatolia serves Turkish food.
User: What is the area?

inform(price=expensive, food=Turkish)

inform(price=expensive, 
food=Turkish); request(area)

Dialogue State Induction (DSI)
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Zero-shot DST: support unseen domains (services)

Example from the SGD dataset [Rastogi et al., 2019].

Motivation: Different domains (services) with similar schemas
slots along with their natural language description

service_name: “Flights"                                                 Service
description: "Search for cheap flights across multiple providers"

name: "origin"                                                                 Slots
description: “City of origin for the flight"

name: "destination"
description: “City of destination for the flight"

service_name: "Trains"                                                 Service
description: “Service to find train journeys between cities"

name: "from"                                                                  Slots
description: “Starting city for train journey"

name: "to"
description: “Ending city for the train journey"

[Rastogi et al., 2019]Rastogi A, Zang X, Sunkara S, et al. Towards scalable multi-domain conversational agents: The schema-guided dialogue dataset[J]. arXiv
preprint arXiv:1909.05855, 2019.
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train, Chicago, Dallas, Wednesday

• Candidates (values) extraction 
(POS tag, NER, coreference)

Inform{train-departure=Chicago, 
train-destination=Dallas, 
train-leave at=Wednesday}train=None

Two steps:

• Slot assignment: two neural 
latent variable models
(DSI-base and DSI-GM)

Utterance: I need to take a train out of Chicago, 
I will be leaving Dallas on Wednesday.
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• Dialogue state induction: a novel task to automatically identify 
dialogue states

Conclusion

• DSI-base/DSI-GM: two neural generative models with 
latent variables

• Challenging and promising: unsupervised setting is very practical

• IJCAI review: this problem is important and interesting, this area 
should attract more attention. This work has great potential of 
motivating follow-up research.
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